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1 ABSTRACT 

To this author’s knowledge, no published work expounds the benefits or feasibility of software 

simulation of Peripheral Component Interface (PCI) devices. 

In the 21st century, commercially viable PCI devices must be capable of plug-n-play, power 

management, web based enterprise management and scatter-gather DMA.  A device simulation in 

software incorporating all of these features is feasible. 

This article discusses the many benefits and uses of a PCI device simulator as well as how to produce 

one.    

 

2 INTRODUCTION 

In the last twenty-plus years the PCI bus and its derivatives have seen an explosion in adoption 

across all small computer platforms.  There are countless PCI devices on the market.  The PCI bus 

has been through numerous revisions for the sake of performance improvement and expansion of 

function. 

There is a PCI Special Interest Group which has approximately one thousand members, primarily 

third-party hardware vendors who collaborate to evaluate and adopt standards for the different 

aspects of the PCI bus and interoperability with PCI devices. 

To put it succinctly the PCI bus has critical mass.  It will probably be around in some form for the life 

of the small computer. 

There are several published papers in the public domain literature describing software simulations 

of the PCI bus itself.  There is a description of a hardware simulator in a Windows device driver book 

Dekker and Newcomer. [Dekker & Newcomer, 1999].  This very admirable effort modeled a 

character-mode device on NT 4.0.  Unfortunately it is obsolete for multiple reasons. 
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3 SIMULATION BENEFITS AND USAGE 

 

A software simulation of a PCI device is most useful when the device is still being designed in the 

hardware lab, or when sufficient quantity is not available from manufacturing. It can save weeks or 

months of calendar time to develop the device software in parallel with hardware design and 

manufacure. 

I was involved in a project a few years ago where a small company was having difficulty completing 

the design of their storage device and then getting quantities from the fabrication plant in Taiwan.  

We implemented a basic simulation of the target device, which allowed exercising the device 

management portion of the target device driver in user mode.  Many man-months over several  

calendar months were dedicated to implementing the simulation and building testware around the 

device driver.  Yet when the device(s) arrived we were exercising complete kernel-mode drivers for 

the first time on both Linux and Windows. 

A good device simulator exercises plug-n-play and power management without a physical device.  A 

good simulator can emulate hard to create error conditions: device failure, device power failure, or 

errors that the real device cannot easily be made to produce.  100% device driver source code 

coverage can be achieved. 

A device simulator can also be a useful training tool for developing device drivers for software 

engineers who develop device drivers.  I attended a driver development course a number of years 

ago where the developers of the course (Dekker & Newcomer) provided a bare-bones device 

simulator to students instead of a device kit.  It was basically a tool for their debug lab.  But it was 

the inspiration for developing a full-featured device simulator in software.  

A device simulator enables development on a platform with good development, testing and 

debugging resources when the target platform may have limited tools as in the case of tablets, or 

limited access as in the case of embedded systems. 

Lastly, the kernel module of a PCI bus and device simulation is of necessity a subset of the PCI bus 

driver, and therefore any bus driver which supports child devices.  It may prove useful as the basis 

for future bus driver development. 

 

 

 

 

 



4 PROPERTIES OF PCI DEVICES RELEVANT TO SOFTWARE 

Nearly all PCI devices have these properties that driver software must manage: 

1) They have a formatted configuration space containing information about identity and 

behavior properties. 

2) They are memory-mapped. 

3) They issue interrupts to the host. 

4) They transfer significant chunks of data to/from the host – usually through Direct Memory 

Access (DMA). 

5) They must conform to plug-n-play and power management expectations of the host 

operating system (OS). 

 

 

 

 

4.1 PCI DEVICE HOST COMPUTER ENVIRONMENT 
The diagram on the following page shows the host computer environment of a PCI device.  From top 

to bottom we have: a test application which wishes to communicate with the device, the device 

driver that the test app interacts with, the bus driver that manages the PCI bus, and the PCI bus 

itself with the target device mounted onto it.  

Observe that the test app interacts with the device (driver) through opens, reads, writes and Input-

output controls (IOCTL)s. Also that the PCI device issues an interrupt to the host through the PCI 

bus, and the OS kernel delivers this interrupt to the device driver through a table lookup.  Finally, 

observe that data is transferred – DMA or buffered – between the target device and driver, through 

the PCI bus. 

 

 

 



 
 



4.2 PCI DEVICE AND BUS INTERACTION WITH THE HOST KERNEL 
The following diagram shows the PCI bus driver and a PCI device driver interacting with the host 

kernel.  Observe that device configuration space is maintained by the bus driver and is available to 

the appropriate device driver through kernel services.  Also that the bus driver informs the kernel 

Plug-and-Play (PnP) manager of a new device instance on the bus.  Finally observe that the kernel 

PnP manager assigns all resources needed by the device driver for the device. 

 

 

 

  



4.3 CONFIGURATION SPACE 
There is a 256 byte formatted configuration space in host memory for every device on a PCI bus. 

This memory is maintained by the bus driver.  Configuration space contains two sets of information: 

identity and properties. 

The identity information is: Vendor_Id, Device_Id, Revision_Id and Class Code. This information is 

sufficient to indicate which device driver should be assigned to the device, and what set of features 

are supported by the device. 

The main properties that enable the device to function are: Interrupt pin, Interrupt line, Base 

Address Registers and Capabilities Pointer.  The interrupt pin indicates which of two pins the 

(legacy) interrupt is wired into on the host motherboard.  The interrupt line indicates which of four 

lines on the PCI bus will signal the interrupt.  The Base Address Registers indicate the physical 

address of the device registers and other banks of device memory that require a mapping into 

physical address space by the host.  The Capabilities Pointer is not a pointer but an offset from the 

beginning of configuration space to where a set of device capability parameters is located.  

 

4.4 MEMORY-MAPPING 
A PCI device will have a set of read-writeable registers that the host will use to program the device 

and determine device state. In addition, there may be other banks of memory on the device for 

other purposes.  Each of these banks of device memory are assigned a physical address by the OS.  

Examples are device firmware accessible by the host and the Controller Memory Buffer of Non-

Volatile Memory express (NVMe) devices. 

We say that these memory banks are mapped into the host’s physical address space.  These 

addresses are stored in the Base Address Registers (0 – 5) in device configuration space. 

  



4.5 HOST INTERRUPT 
When a device has completed a programmed i/o, or has a problem state to report, it issues an 

interrupt to the host hardware. This may be done by changing the voltage on a particular pin on the 

bus (legacy interrupt), or setting a specific value into a specific location of memory (Message 

Signaled Interrupt - MSI).  The host OS is responsible for delivering the interrupt to the kernel 

software module which manages the device. 

 

4.6 DMA DATA TRANSFER 
PCI devices usually transfer significant chunks of data to/from the host random access memory 

(RAM). This is usually done through DMA.  DMA works without requiring clock cycles from the 

processor or buffer copying.  

A DMA-capable PCI device will typically have a DMA controller which is capable of processing a   

Scatter-Gather List (SGL) in ram, formatted in a specific way.  This list will contains physical 

addresses on the host, offsets on the device, transfer lengths and direction of transfer. 

 

4.7 PLUG-N-PLAY AND POWER MANAGEMENT 
The PCI bus and device must perform several PnP and Power Management (PM) functions. They 

must plug in or unplug, and transfer to/from several different power states.  A PCI device must 

change power state in response to system or device power state changes initiated by the OS. 

  



5 SIMULATED PCI DEVICE IMPLEMENTATION 

 

A software simulation of a PCI bus and device must perform the following functions: 

1) Present the ‘device’ to the host OS so that the natural PnP processing proceeds. 

2) Provide configuration resources to the target device driver – simulating the PnP Manager.  

These include:  address of the device registers, address(es) of other bank(s) of memory,  

Interrupt Descriptor Table (IDT) vector, device Interrupt Request Line (IRQL) and processor 

affinity. 

3) Allocate sufficient memory for one or more devices and provide a mapping to “device 

memory” for both the target device driver and any device simulation UI program. 

4) Invoke the target driver’s Interrupt Service Routine (ISR) exactly as the OS kernel would do so. 

5) Behave like the PCI bus or PCI device in response to external events – triggered by the UI 

program(s). 

 

The diagram on the following page shows the PCI device driver in the simulation 

environment.  Observe that the test app interacts with the PCI device driver as before. 

It should be completely unaware that the “device” is implemented in software.  Also that 

there is a device node in both the simulation bus driver as well as the PCI device driver for 

each instance of a device.  The simulation driver is under control of the user interface 

program. 

 

The simulation driver maps “devices” into the device driver as the PnP manager would.  The 

simulation driver invokes the device driver’s Interrupt Service Routine (ISR) when the 

“device” interrupts. 

 

 

 

 

 



 

  



5.1 DEVICE PRESENTATION 
As stated, every bus driver must indicate to the OS that a new device has arrived when it detects a 

plug-in.  A simulation of the PCI bus would do the normal processing to create a new device node 

and call the appropriate kernel service to alert the OS that there is a change in configuration on the 

bus.  This should cause the target device driver to do its normal processing for a plug-in.  When an 

unplug occurs, the bus simulation must delete its device node and again call the appropriate kernel 

service to alert the OS that there is a change in bus configuration. 

When a change in system or device power state is initiated by the host the device simulation should 

faithfully behave as the device would. 

5.2 RESOURCE MANAGEMENT 
The simulation must provide resource/configuration management parameters to the target device 

driver as if they came from the PnP manager.  This includes a physical address for device registers, 

interrupt parameters (IDT entry, device IRQL, processor affinity) and physical addresses for any 

other banks of device memory that the driver needs to access. 

5.3 MEMORY ALLOCATION 
The simulation must allocate enough memory to represent one or more devices in ram.  It must 

provide a mapping into a virtual address space for the target device driver and the device simulation 

graphical user interface (GUI) program. 

  



5.4 INVOKING AN ISR 
The simulation must invoke the target device driver’s ISR exactly as the OS kernel would. This entails 

running at the proper processor affinity, acquiring the spinlock specific to the device interrupt 

object, raising the host execution level to device IRQL, and then passing the correct arguments to 

the target driver ISR.  These arguments would be the interrupt object and perhaps some context 

information and/or an MSI message-id. 

 

5.5 BUS AND DEVICE OPERATION 
The simulator transfers data between the host and “device memory” as would the device.  The GUI 

representation of the device displays the current state of the device.  The simulator also behaves as 

does the device DMA controller.  This entails processing the hardware SGL and transferring chunks 

of data between the host physical addresses and device memory.  

 

5.6 TARGET DEVICE DRIVER REQUIREMENTS 
The target device driver needs to be built for simulation_mode as distinct from real_mode, where 

real hardware exists.  This is because the target device driver must exchange a few parameters with 

the device simulator so that the simulator can know how to interact with the driver as the OS 

would. These parameters are: the interrupt object, the spinlock object for the interrupt, the device 

IRQL, the interrupt processor affinity, and the address of the driver ISR. 

Ideally, there would be no if-then-else logic to vary the execution path between simulation_mode 

and real_mode.  There should only be some additional logic in simulation_mode. 

This is not good because we are missing some code coverage in simulation mode.  

#ifdef SIMULATION_MODE…  // Do it this way…                                                                                       

#else…                                          // Do it this other way…                                                                                                                                           

#endif 

 

This is the preferred way.  We are merely adding code in simulation mode to help the simulator. 

#ifdef SIMULATION_MODE 

     //Pass some parameters to the simulator 

#endif 



6 EXTENT OF USEFULNESS 

A software simulator produced from source code has no platform constraint.  The target driver, user 

application(s) and simulation software can be built and exercised on 32 or 64 bit; X64, Itanium or 

ARM architecture, as well as any recent or new release of the target OS -- Windows, Linux, or other. 

As mentioned above, a simulator can even be run cross-platform. The device driver for a device 

which is targeted for the ARM architecture can be developed and exercised on legacy i386 or x64 

before porting to the target platform, which may have minimal development and test support. 

Simulation software can be run on a native hardware platform or on a virtual machine (VM) such as 

VBox, QEMU-KVM, VMware, or Hyper-V. 

A software simulation of a memory-mapped device is not even constrained to the PCI bus. Should a 

truly new memory-mapping bus come along, or a significant enhancement to PCI(x) that software 

would be sensitive to, it is a simple matter to modify the simulation and target software for a 

different bus and configuration space, and then rebuild.  

 

 

7 CAVEATS 

A simulation from compiled source code cannot accurately model any new target device as is.  It is 

necessary to customize the software from a prototype device simulation to one consistent with the 

specifications of the target device. 

A software simulation cannot accurately model the timing or throughput performance of the device 

interacting with the bus. Register reads and writes across the bus are implemented in the simulation 

as memory transfers within ram.  DMA transfers are implemented by buffer copying within ram. 

Multiple devices on the same bus will compete for bus bandwidth. 

A device simulation – even with 100% code coverage - cannot be a substitute for thorough testing 

with the real device.  New devices have their quirks and don’t always behave just like the 

specification.  Real-world devices can cause resource conflicts among themselves, leading to 

intermittent mis-routing of interrupts. 

Of course, if the specification for a device changes, the simulation must change as well. 

 

  



8 WHAT MIGHT IT LOOK LIKE? - A WORKING MODEL 

The reader may have guessed by now that the author has a working model of PCI device simulation 

in the Linux and Windows domains.  This includes char-mode and block-mode devices in Linux and 

generic device and storage devices on Windows. On the author’s web site there is a diagram 

showing how the components work together and a three minute demonstration of operation.  

Please see the authors’ web site here… http://www.htfsoftware.com 

 

9 DEVELOPMENT PIPELINE 

1) Build a front end for the device simulation such that FPGA or ASIC device definitions can 

serve as input to generation of simulations for devices in development.  

2) Add reporting capabilities so that it’s possible to track what has been tested as well as 

performance results. 

 

10 CONCLUSION 

A software simulation of PCI devices is both feasible and beneficial.  Chief benefits include parallel 

development of software and hardware, 100% code coverage, platform flexibility and hard-to-

create or rarely occurring conditions produced readily.  

With a prototype working on the target OS, customization and deployment can be achieved in a 

matter of days or a few weeks -- a device driver developer’s dream. 

 A working model of PCI device simulation exists both in the Linux and Windows domains.   

I leave it to the reader to consider the cost versus benefit. 

I thank the reader for their interest. 
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11 GLOSSARY OF TERMS  

ASIC – Application Specific Integrated Circuit - an integrated circuit customized for a particular use, 

rather than intended for general-purpose use.   For example, a chip designed to run in a digital voice 

recorder is an ASIC.  ASICs are fixed, they are not modifiable.  As opposed to FPGAs which are field 

programmable.  ASICs are the brains of many PCI devices. 

DMA  - Direct Memory Access -  a means of transferring memory between a device and host 

memory in a   computer without a processor being involved in buffer copying.  DMA is much faster 

than normal memory transfers but is more difficult to set up by programming the device. 

FPGA – Field Programmable Gate Array – an integrated circuit containing an array of programmable 

logic blocks and a hierarchy of reconfigurable interconnects that allow the blocks to be wired 

together, like many logic gates that can be inter-wired in different configurations. These logic blocks 

form the basis for computer devices which perform complex logic operations as part of their 

function.  FPGA defined logic is the brains of many PCI devices. 

GUI    - Graphical User Interface – a means of interacting with a computer and its electronic devices 

through   visual icons and indicators as opposed to text-based interfaces or text navigation. 

IDT     - Interrupt Descriptor Table – a table in host memory which is used to route hardware 

interrupts from specific devices to the appropriate interrupt service routine in a device driver which 

knows how to control   the interrupting device.  

IOCTL - Input Output Control – a command from a user program to a device through its device 

driver to perform some specific defined function.  It may be an administrative function or an i/o 

which is not a simple read or write. 

IRQL   - Interrupt Request Level – an execution level which an interrupt service routine will run at 

assigned by the OS.  When a processor is running at execution level X, only an interrupt at IRQL X+1 

can gain execution on the same processor.  

MSI    - Message Signaled Interrupt – a means of triggering an interrupt to a host by writing to host 

memory rather than changing the voltage on a specific pin wired to the host.  Non MSI interrupts 

are now referred to as legacy interrupts. 

OS      - Operating System – a software system which runs on a computer and performs all 

administrative functions for one or more end-users.  Well known small computer OSes are: 

Windows, Linux, and VxWorks. 

PCI     - Peripheral Component Interface - a local computer bus for attaching hardware devices in a 

computer.  Attached devices are typically expansion cards that fit into slots but may be an 

integrated circuit fitted onto the motherboard itself. 



PM  - Power Management is a feature of computers and computer peripherals that turns off the 

power or switches the system or device to a lower power state when inactive.  As more and more 

computation devices have become portable and battery-powered, power management has 

increased in importance.  

PnP    - Plug-and-Play – a feature of modern OSes that allow attaching a new device and having it 

perform its normal functions without having to reconfigure the OS and without having to reboot the 

system. 

Processor Affinity – is the process of binding and unbinding a process, thread or function to a 

particular processor or set of processors, so that they will execute only on the designated 

processor(s).  The benefit to binding hardware interrupt functions to processors is so that multiple 

packets of data from a device will be in the same processors’ cache.  This can be a significant 

performance improvement. 

RAM – Random Access Memory - is a form of computer data storage allowing read or write of 

digital data in almost the same amount of time irrespective of the physical location of data inside 

the memory (thus random access).   RAM is normally volatile, meaning stored information is lost if 

power is removed. Therefore it is inappropriate for permanent storage. 

SGL    - Scatter-Gather List - a set of elements in memory describing a DMA transfer between the 

host and a device.  A Scatter-Gather List is formatted specific to the requirements of the target 

device, and is processed by the device’s DMA controller. 

VM     - Virtual Machine – an emulation of a computer and an OS running as a software simulation 

on a host machine and a VM supporting OS.  Examples of VM Oses are: VMware by VMware, VBox 

by Oracle, and Hypervisor by Microsoft. 
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